If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+96t+80=0
a = -16; b = 96; c = +80;
Δ = b2-4ac
Δ = 962-4·(-16)·80
Δ = 14336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14336}=\sqrt{1024*14}=\sqrt{1024}*\sqrt{14}=32\sqrt{14}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-32\sqrt{14}}{2*-16}=\frac{-96-32\sqrt{14}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+32\sqrt{14}}{2*-16}=\frac{-96+32\sqrt{14}}{-32} $
| 4x^2+28x+186=0 | | 5y+6=9y+-30 | | 0.2a=0.03a | | 8k+73=4(2k+17) | | d+1=3(d-3) | | x=7/8(x)+4 | | 4x+9-8(x+1)=5x+6 | | (2x-4)(x+4)=0 | | 16x+4=15x-9 | | 7x+28=-7(x+2) | | 4*2^x=9*7^x | | 7-2x/3-6-x/2=1 | | (7-2x/3)-(6-x/2)=1 | | 3/7(t-2)-15/7=-3 | | (3x-6)(x-6)=420 | | 3y-6=420 | | (-1/2x-12)+1=(4/x-6) | | 5x–8=16-x | | -1/2x-12+1=4/x-6 | | -7(4x-7)=150 | | -7(3w-3)=22(5-w) | | -7(4h-7)=150 | | 3(4j-7)=135 | | -4.095t^2+7.5t+31=0 | | 0.8(y)=0.66666666667 | | 1/2x+10+135=180 | | 2/3=4/5(y) | | 9(7x-5)=27 | | -5(2z-7)=11(7-z) | | -2.5+h=10.75 | | 4/5(z-3)-8/5=-4 | | 5(9k-4)=25 |